STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lplJLipoate-protein ligase LplJ. (328 aa)    
Predicted Functional Partners:
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
 
 0.998
pdhD
Dihydrolipoyl dehydrogenase.
 
 
 0.994
KPU44413.1
NADH oxidase.
  
 
 0.964
KPU43184.1
NADH oxidase.
  
 
 0.964
fldZ
2-enoate reductase FldZ.
  
 
 0.964
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
   
 
 0.948
fabF
3-oxoacyl-[acyl-carrier-protein] synthase 2; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP.
    
 0.803
gcvT
Aminomethyltransferase.
  
  
 0.703
gcvPA
Putative glycine dehydrogenase (decarboxylating) subunit 1; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
 
    0.624
gcvPB
Putative glycine dehydrogenase (decarboxylating) subunit 2; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. C-terminal subunit subfamily.
 
    0.621
Your Current Organism:
Oxobacter pfennigii
NCBI taxonomy Id: 36849
Other names: ATCC 43583, Clostridium pfennigii, DSM 3222, O. pfennigii, strain V5-2
Server load: low (28%) [HD]