STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AFY56341.1PFAM: Magnesium-protoporphyrin IX methyltransferase C-terminus; TIGRFAM: magnesium protoporphyrin O-methyltransferase. (228 aa)    
Predicted Functional Partners:
AFY55650.1
Cobaltochelatase CobN subunit; PFAM: Domain of unknown function (DUF3479); CobN/Magnesium Chelatase; TIGRFAM: magnesium chelatase, H subunit.
 
 
 0.984
AFY56593.1
Protoporphyrin IX magnesium-chelatase; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX.
 
 0.984
AFY58086.1
Protoporphyrin IX magnesium-chelatase; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX.
  
 
 0.981
acsF-2
Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME); Belongs to the AcsF family.
 
 
 0.980
AFY56659.1
Cobaltochelatase CobN subunit; PFAM: Domain of unknown function (DUF3479); CobN/Magnesium Chelatase; TIGRFAM: magnesium chelatase, H subunit.
 
 
 0.980
acsF
Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME); Belongs to the AcsF family.
 
 
 0.978
AFY58265.1
Chlorophyll synthase; PFAM: UbiA prenyltransferase family; TIGRFAM: bacteriochlorophyll/chlorophyll synthetase; chlorophyll synthase, ChlG.
  
 
 0.846
chlN
Ferredoxin protochlorophyllide reductase subunit N; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex.
 
  
 0.835
AFY54825.1
Geranylgeranyl reductase; PFAM: Pyridine nucleotide-disulphide oxidoreductase; TIGRFAM: geranylgeranyl reductase; geranylgeranyl reductase family.
  
  
 0.832
chlB
Ferredoxin protochlorophyllide reductase subunit B; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex.
 
  
 0.823
Your Current Organism:
Rivularia sp. PCC7116
NCBI taxonomy Id: 373994
Other names: Calothrix sp. ATCC 29111, Calothrix sp. PCC 7116, R. sp. PCC 7116, Rivularia sp. LIP, Rivularia sp. PCC 7116
Server load: low (12%) [HD]