STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
parEDNA topoisomerase IV subunit B; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase family. ParE type 1 subfamily. (681 aa)    
Predicted Functional Partners:
parC
DNA topoisomerase IV subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily.
 
 0.995
gyrA
DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
 
 0.994
dnaN
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
 
 0.820
recF
DNA replication/repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family.
  
 0.781
APG07244.1
DNA topoisomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.766
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
 
 
 0.740
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.730
yacG
DNA gyrase inhibitor YacG; Inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. Acts by binding directly to the C- terminal domain of GyrB, which probably disrupts DNA binding by the gyrase.
    
 
 0.720
rpsI
30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family.
 
   
 0.718
ychF
Redox-regulated ATPase YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner.
 
 
 
 0.707
Your Current Organism:
Bradyrhizobium japonicum
NCBI taxonomy Id: 375
Other names: ATCC 10324, B. japonicum, Bradyrhizobium sp. BC-P14, Bradyrhizobium sp. SEMIA 511, Bradyrhizobium sp. SEMIA 6154, Bradyrhizobium sp. mas14, Bradyrhizobium sp. mas32, Bradyrhizobium sp. mas33, Bradyrhizobium sp. mas35, Bradyrhizobium sp. mas36, Bradyrhizobium sp. mas37, Bradyrhizobium sp. mas38, Bradyrhizobium sp. mas39, Bradyrhizobium sp. mas4, Bradyrhizobium sp. mas43, Bradyrhizobium sp. mas44, Bradyrhizobium sp. mas45, Bradyrhizobium sp. mas48, Bradyrhizobium sp. mas5, CCUG 27876, CIP 106093, DSM 30131, DSMZ 30131, HAMBI 2314, IFO 14783, JCM 20679, LMG 6138, LMG:6138, NBRC 14783, NRRL B-4507, NRRL L-241, Rhizobacterium japonicum, Rhizobium japonicum, USDA 6
Server load: low (24%) [HD]