STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KZO60562.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (222 aa)    
Predicted Functional Partners:
purL
Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...]
       0.645
KZO60584.1
Saccharopine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.483
KZO57660.1
TetR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.438
KZO60442.1
TetR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.400
Your Current Organism:
Dietzia maris
NCBI taxonomy Id: 37915
Other names: ATCC 35013, AUCNM A-593, AUCNM:A:593, Brevibacterium maris, CCUG 44488, CIP 104188, D. maris, DSM 43672, IEGM 55, IFO 15801, IMV 195, JCM 6166, LMG 5361, LMG:5361, NBRC 15801, NRRL B-16941, NRRL:B:16941, Rhodococcus maris, VKM Ac-593, VKM:Ac:593
Server load: low (24%) [HD]