STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pafBHypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (699 aa)    
Predicted Functional Partners:
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
  
 
   0.880
rbpA
Hypothetical protein; Binds to RNA polymerase (RNAP), stimulating transcription from principal, but not alternative sigma factor promoters. Belongs to the RNA polymerase-binding protein RbpA family.
 
 
   0.878
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 
 0.829
hrdB
RNA polymerase subunit sigma; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
    
   0.828
rpoC_1
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
   0.828
rpoA_1
DNA-directed RNA polymerase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
   0.828
pafA
Pup--protein ligase; Catalyzes the covalent attachment of the prokaryotic ubiquitin-like protein modifier Pup to the proteasomal substrate proteins, thereby targeting them for proteasomal degradation. This tagging system is termed pupylation. The ligation reaction involves the side-chain carboxylate of the C-terminal glutamate of Pup and the side- chain amino group of a substrate lysine.
  
  
 0.796
fkbP_1
Peptidylprolyl isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.681
tatC2
Twin arginine-targeting protein translocase TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides.
       0.673
tatA
Sec-independent protein translocase TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system.
       0.673
Your Current Organism:
Rothia kristinae
NCBI taxonomy Id: 37923
Other names: ATCC 27570, CCM 2690, CCUG 33026, CIP 81.69, DSM 20032, IEGM 390, IFO 15354, JCM 7237, Kocuria kristinae, Kocuria kristiniae, LMG 14215, LMG:14215, Micrococcus kristinae, Micrococcus kristiniae, NBRC 15354, NCTC 11038, NRRL B-14835, R. kristinae
Server load: low (18%) [HD]