STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tatCTwin arginine-targeting protein translocase TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides. (291 aa)    
Predicted Functional Partners:
tatB
Twin arginine-targeting protein translocase TatB; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatC, TatB is part of a receptor directly interacting with Tat signal peptides. TatB may form an oligomeric binding site that transiently accommodates folded Tat precursor proteins before their translocation.
 
 0.999
tatA
Preprotein translocase subunit TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system.
 
 0.998
OBQ67896.1
Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family.
   
 0.751
OBQ59993.1
Dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family.
   
 0.751
argS
arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.708
secD
Protein translocase subunit SecDF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA; Belongs to the SecD/SecF family. SecD subfamily.
 
   
 0.642
surE
5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family.
 
     0.555
OBQ75009.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
   
 0.551
serS
serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
  
    0.541
OBQ75004.1
protein-L-isoaspartate O-methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.537
Your Current Organism:
Mesorhizobium loti
NCBI taxonomy Id: 381
Other names: ATCC 700743, CCUG 27878, DSM 2626, IFO 14779, JCM 21464, LMG 6125, LMG:6125, M. loti, Mesorhizobium sp. LMG 6125, NBRC 14779, NZP 2213, Rhizobium loti
Server load: low (24%) [HD]