STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrAExcinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (973 aa)    
Predicted Functional Partners:
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
 
 
 0.999
mfd
Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily.
 
 
 
 0.945
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 
 
 0.933
AIM00091.1
ATP-dependent DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.749
AIL99381.1
Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism.
     
 0.691
recN
DNA recombination protein RecN; May be involved in recombinational repair of damaged DNA.
 
  
 0.671
recR
Recombinase RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO.
 
   
 0.666
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
 
   
 0.656
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
 
  
 0.656
ruvB
ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing.
 
  
 0.605
Your Current Organism:
Sinorhizobium meliloti
NCBI taxonomy Id: 382
Other names: ATCC 9930, CCUG 27879, CFBP 5561, DSM 30135, Ensifer meliloti, Ensifer sp. AC50a, Ensifer sp. AC50e, HAMBI 2148, IAM 12611, ICMP 12623, IFO 14782, JCM 20682, LMG 6133, LMG:6133, NBRC 14782, NCAIM B.01520, NRRL L-45, NZP 4027, Rhizobium meliloti, Rhizobium meliloti (megaplasmid pRME41B SYM), Rhizobium meliloti (plasmid pRmeGR4b), Rhizobium meliloti plasmid pRmeGR4b, Rhizobium sp. AC50e, S. meliloti
Server load: low (22%) [HD]