STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslVPeptidase component of the HslUV protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. (172 aa)    
Predicted Functional Partners:
hslU
ATP-dependent protease ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
 0.999
grpE
Hsp 24 DnaK nucleotide exchange factor, probable member of theDnaK/DnaJ/GrpE foldase complex; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrat [...]
  
  
 0.915
htpG
Heat shock protein Hsp90-like protein; Molecular chaperone. Has ATPase activity.
   
  
 0.902
dnaJ
Chaperone protein dnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
   
  
 0.897
groEL
60 kDa chaperonin 1; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
   
 
 0.876
groS
Co-chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
   
  
 0.866
Q91_2064
DUF971 domain containing protein.
  
    0.852
dnaK
Chaperone protein dnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
  
 0.816
Q91_0864
AAA ATPase domain protein.
   
  
 0.788
lon
ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
   
  
 0.788
Your Current Organism:
Cycloclasticus sp. P1
NCBI taxonomy Id: 385025
Other names: C. sp. P1
Server load: low (20%) [HD]