STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purMIdentified by sequencesimilarity; putative InterPro: Phosphoribosylformylglycinamidine cyclo-ligase; High confidence in function and specificity. (347 aa)    
Predicted Functional Partners:
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate.
 
 
 0.999
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 0.999
purD
(phosphoribosylamine--glycine ligase) identified by match to TIGR protein family HMMTIGR00877 InterPro: Phosphoribosylglycinamide synthetase; High confidence in function and specificity; Belongs to the GARS family.
  
 0.996
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family.
  
 0.994
purK
Phosphoribosylaminoimidazole carboxylase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR); Belongs to the PurK/PurT family.
 
 
 0.992
purE
Phosphoribosylaminoimidazole carboxylase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
 
 
 0.983
purH
(phosphoribosylaminoimidazolecarboxamideformyltrans feras e/IMP cyclohydrolase) identified by sequence similarity; putative; High confidence in function and specificity.
 
  
 0.961
purC
(phosphoribosylaminoimidazole-succinocarboxamidesyn thase) identified by sequence similarity; putative InterPro: SAICAR synthetase; High confidence in function and specificity.
 
  
 0.937
purB
Adenylosuccinate lyase; purB identified by sequencesimilarity; putative InterPro: Adenylosuccinate lyase; High confidence in function and specificity; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily.
  
 
 0.862
purT
Formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family.
  
  
 0.821
Your Current Organism:
Alcanivorax borkumensis
NCBI taxonomy Id: 393595
Other names: A. borkumensis SK2, Alcanivorax borkumensis SK2, Alcanivorax borkumensis str. SK2, Alcanivorax borkumensis strain SK2
Server load: low (36%) [HD]