STRINGSTRING
hslO protein (Sinorhizobium fredii NGR234) - STRING interaction network
"hslO" - 33 kDa chaperonin in Sinorhizobium fredii NGR234
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslO33 kDa chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress (331 aa)    
Predicted Functional Partners:
NGR_c32690
annotation not available (136 aa)
   
   
  0.766
hslU
ATP-dependent protease ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis (434 aa)
     
   
  0.618
tig
Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily (491 aa)
 
   
  0.613
hpf
Ribosome hibernation promoting factor; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth (190 aa)
   
 
 
  0.613
hslV
ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery (185 aa)
   
   
  0.611
dnaJ1
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (379 aa)
     
   
  0.600
rnr
Ribonuclease R; 3’-5’ exoribonuclease that releases 5’-nucleoside monophosphates and is involved in maturation of structured RNAs (788 aa)
 
        0.585
NGR_c33300
annotation not available (473 aa)
 
        0.568
prmA
Ribosomal protein L11 methyltransferase; Methylates ribosomal protein L11 (291 aa)
 
        0.551
NGR_c04930
annotation not available (415 aa)
 
          0.512
Your Current Organism:
Sinorhizobium fredii NGR234
NCBI taxonomy Id: 394
Other names: Ensifer fredii NGR234, Plasmid pNGR234a, Rhizobium sp. (strain NGR234), Rhizobium sp. NGR234, S. fredii NGR234, Sinorhizobium fredii NGR234, Sinorhizobium sp. NGR234
Server load: low (15%) [HD]