STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ABI67087.1PFAM: Integral membrane protein TerC; KEGG: ilo:IL1429 hypothetical protein. (242 aa)    
Predicted Functional Partners:
ABI66567.1
PFAM: CBS domain containing protein; protein of unknown function DUF21; transporter-associated region; KEGG: bmb:BruAb1_2002 CBS domain protein.
 
      0.900
ABI67317.1
PFAM: CBS domain containing protein; transporter-associated region; KEGG: ccr:CC0053 CBS domain protein.
 
    0.863
priA
Primosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily.
       0.619
xerC-2
Phage integrase family protein; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
     
 0.457
atpH
ATP synthase F1 subcomplex delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family.
  
    0.434
atpA
ATP synthase F1 subcomplex alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family.
       0.429
ABI67089.1
PFAM: protein of unknown function DUF484; KEGG: mag:amb4252 hypothetical protein.
       0.415
Your Current Organism:
Maricaulis maris
NCBI taxonomy Id: 394221
Other names: M. maris MCS10, Maricaulis maris MCS10, Maricaulis maris str. MCS10, Maricaulis maris strain MCS10
Server load: low (14%) [HD]