STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psbMPhotosystem II reaction center protein PsbM; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (39 aa)    
Predicted Functional Partners:
psbB
Photosystem II chlorophyll-binding protein CP47; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily.
   
 0.985
psbV
Cytochrome c-550; Low-potential cytochrome c that plays a role in the oxygen- evolving complex of photosystem II.
    
 0.978
psbT
Photosystem II protein PsbT; Seems to play a role in the dimerization of PSII. Belongs to the PsbT family.
   
 0.972
psbY
Photosystem II protein PsbY; Manganese-binding polypeptide with L-arginine metabolizing enzyme activity. Component of the core of photosystem II. Belongs to the PsbY family.
    
 0.968
psbX
Photosystem II protein PsbX; Involved in the binding and/or turnover of quinones at the Q(B) site of Photosystem II.
    
 0.968
psbH
Photosystem II phosphoprotein PsbH; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.
    
 0.965
ycf12
Protein of unknown function DUF888; A core subunit of photosystem II (PSII); Belongs to the Ycf12 family.
    
 0.964
psbC
Photosystem II 44 kDa subunit reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily.
    
 0.961
ACL42889.1
PFAM: photosystem II manganese-stabilizing protein PsbO; KEGG: tel:tll0444 photosystem II manganese-stabilizing polypeptide.
    
 0.958
psbI
Photosystem II protein PsbI; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.
    
 0.956
Your Current Organism:
Cyanothece sp. PCC7425
NCBI taxonomy Id: 395961
Other names: C. sp. PCC 7425, Cyanothece sp. ATCC 29141, Cyanothece sp. PCC 7425, Synechococcus sp. PCC 7425
Server load: low (28%) [HD]