STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
acnAAconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (928 aa)    
Predicted Functional Partners:
BF93_02335
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family.
 
 0.997
BF93_11520
Isocitrate dehydrogenase; NADP-specific, catalyzes the formation of 2-oxoglutarate from isocitrate or oxalosuccinate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the monomeric-type IDH family.
 
 
 0.966
leuB
3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 2 subfamily.
 
 0.899
BF93_03575
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.891
BF93_00565
Superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Belongs to the iron/manganese superoxide dismutase family.
   
 
 0.829
BF93_09980
Superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Belongs to the iron/manganese superoxide dismutase family.
   
 
 0.829
rplE
50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.
   
 
 0.828
rplB
50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family.
    
 
 0.823
rpmB
50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
   
   0.820
rplS
50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site.
   
 
 0.819
Your Current Organism:
Brachybacterium phenoliresistens
NCBI taxonomy Id: 396014
Other names: B. phenoliresistens, BCRC 17589, Brachybacterium phenoliresistens Chou et al. 2007, Brachybacterium sp. phenol-A, JCM 15157, LMG 23707, LMG:23707, strain phenol-A
Server load: low (14%) [HD]