node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
BF93_03965 | fhs | BF93_03965 | BF93_17745 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 0.912 |
BF93_03965 | gcvH | BF93_03965 | BF93_08850 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.499 |
BF93_03965 | gcvP | BF93_03965 | BF93_08845 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.534 |
BF93_03965 | gcvT | BF93_03965 | BF93_08855 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.953 |
BF93_03965 | glyA | BF93_03965 | BF93_01235 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.923 |
BF93_03965 | purH | BF93_03965 | BF93_14205 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.911 |
BF93_03965 | thyA | BF93_03965 | BF93_03960 | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.999 |
BF93_04020 | gcvP | BF93_04020 | BF93_08845 | FAD-dependent oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.824 |
BF93_04020 | gcvT | BF93_04020 | BF93_08855 | FAD-dependent oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.976 |
BF93_04020 | glyA | BF93_04020 | BF93_01235 | FAD-dependent oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.821 |
BF93_06500 | gcvH | BF93_06500 | BF93_08850 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.988 |
BF93_06500 | gcvP | BF93_06500 | BF93_08845 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.971 |
BF93_06500 | gcvT | BF93_06500 | BF93_08855 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.976 |
BF93_06500 | glyA | BF93_06500 | BF93_01235 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.921 |
fhs | BF93_03965 | BF93_17745 | BF93_03965 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | 0.912 |
fhs | folD | BF93_17745 | BF93_01240 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.997 |
fhs | gcvP | BF93_17745 | BF93_08845 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.708 |
fhs | gcvT | BF93_17745 | BF93_08855 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.936 |
fhs | glyA | BF93_17745 | BF93_01235 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.973 |
fhs | purH | BF93_17745 | BF93_14205 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.985 |