STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
radAPutative DNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. (455 aa)    
Predicted Functional Partners:
recA
Bacterial DNA recombination; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
   
  
 0.952
recN
DNA repair protein; May be involved in recombinational repair of damaged DNA.
  
  
 0.868
Dshi_2130
COG: COG1286 - Uncharacterized membrane protein, required for colicin V production; PFAM: PF02674-Colicin V production protein.
  
    0.806
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
  
 0.772
Dshi_2128
Conserved hypothetical protein; PFAM PF04403: Paraquat-inducible protein A; similar to paraquat inducible protein A.
       0.770
uvrD
DNA helicase II; Swiss-Prot: P03018-DNA helicase II PFAM: UvrD/REP helicase KEGG: jan:Jann_2777 UvrD/REP helicase.
   
  
 0.760
mutL
DNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex.
     
 0.750
lexA
lexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
     
 0.741
ispDF
Bifunctional enzyme ispD/ispF; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF); In the N-terminal section; belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily.
  
  
 0.706
uvrC
Excinuclease ABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 
  
 0.666
Your Current Organism:
Dinoroseobacter shibae
NCBI taxonomy Id: 398580
Other names: D. shibae DFL 12 = DSM 16493, Dinoroseobacter shibae DFL 12, Dinoroseobacter shibae DFL 12 = DSM 16493, Dinoroseobacter shibae DSM 16493, Dinoroseobacter shibae DSM 16493 = DFL 12, Jannaschia sp. DFL-12
Server load: low (20%) [HD]