STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpmJ-250S ribosomal protein L36; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL36 family. (40 aa)    
Predicted Functional Partners:
rpsN
30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
 
 
 0.993
rpmB
50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
 
 
 0.991
rpsL
30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
  
 
 0.987
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
 
 0.987
tuf
Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis.
  
 0.987
rplQ
50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.987
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
  
 
 0.987
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
  
 
 0.987
rplO
50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family.
  
 
 0.987
rpmD
50S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.987
Your Current Organism:
Rhodococcus kyotonensis
NCBI taxonomy Id: 398843
Other names: CCTCC AB206088, IAM 15415, JCM 23211, R. kyotonensis, Rhodococcus kyotonensis Li et al. 2007, strain DS472
Server load: low (28%) [HD]