STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Q0J7R1_ORYSJOs08g0170100 protein; Belongs to the disease resistance NB-LRR family. (280 aa)    
Predicted Functional Partners:
Q10EP9_ORYSJ
Serine/threonine-protein kinase 12, putative, expressed; Belongs to the protein kinase superfamily.
   
  0.515
Q5SNH4_ORYSJ
cDNA clone:006-304-B11, full insert sequence; Belongs to the protein kinase superfamily.
   
  0.515
A0A0P0WGT0
Os04g0693050 protein; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.
    
 0.460
CC-1
Cytochrome c; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.
    
 0.460
Q8S0R8_ORYSJ
cDNA clone:J033064H20, full insert sequence; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.
    
 0.460
Your Current Organism:
Oryza sativa Japonica
NCBI taxonomy Id: 39947
Other names: Japanese rice, Japonica rice, O. sativa Japonica Group, Oryza sativa (japonica cultivar-group), Oryza sativa Japonica Group, Oryza sativa subsp. japonica
Server load: low (16%) [HD]