STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bioHbioH protein; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. (264 aa)    
Predicted Functional Partners:
bioC
Biotin biosynthesis protein BioC; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway.
  
 0.977
bioF
8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide.
 
 0.970
acpP-2
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis.
  
 
 0.789
bioD-2
Dethiobiotin synthase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Belongs to the dethiobiotin synthetase family.
 
  
 0.741
bioD
Dethiobiotin synthase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Belongs to the dethiobiotin synthetase family.
 
  
 0.726
Spro_4633
KEGG: yen:YE3994 putative competence-related protein F.
     
 0.609
Spro_3704
PFAM: Methyltransferase type 11; Methyltransferase type 12; KEGG: yen:YE1959 hypothetical protein.
  
  
 0.587
birA
Bifunctional BirA, biotin operon repressor/biotin--acetyl-CoA-carboxylase ligase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon.
     
 0.544
trpF
Indole-3-glycerol-phosphate synthase/phosphoribosylanthranilate isomerase; PFAM: N-(5'phosphoribosyl)anthranilate isomerase (PRAI); Indole-3-glycerol phosphate synthase; KEGG: yen:YE2212 tryptophan biosynthesis protein TrpCF.
   
 
 0.544
trpD
Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA).
     
 0.533
Your Current Organism:
Serratia proteamaculans
NCBI taxonomy Id: 399741
Other names: S. proteamaculans 568, Serratia proteamaculans 568, Serratia proteamaculans str. 568, Serratia proteamaculans strain 568
Server load: low (14%) [HD]