STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisShistidyl-tRNA synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (464 aa)    
Predicted Functional Partners:
hisG
ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Long subfamily.
  
 
 0.919
aspS
aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily.
  
  
 0.892
argS
arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.857
alaS
alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain.
 
 
 0.828
AKD04762.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.828
ispG
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. Belongs to the IspG family.
  
  
 0.802
AKD04451.1
Histidine ammonia-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.795
cysS
cysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
  
 0.781
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
 
 
 0.777
ftsA
Cell division protein FtsA; Cell division protein that is involved in the assembly of the Z ring. May serve as a membrane anchor for the Z ring. Belongs to the FtsA/MreB family.
  
    0.742
Your Current Organism:
Pontibacter korlensis
NCBI taxonomy Id: 400092
Other names: CCTCC AB 206081, NRRL B-51097, P. korlensis, Pontibacter korlensis Zhang et al. 2008, Pontibacter sp. z1, Pontibacter sp. z2, strain X14-1
Server load: low (18%) [HD]