node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AKD01946.1 | AKD02735.1 | PKOR_00800 | PKOR_05880 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.920 |
AKD01946.1 | AKD05282.1 | PKOR_00800 | PKOR_22220 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | 0.918 |
AKD01946.1 | def | PKOR_00800 | PKOR_07280 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. | 0.485 |
AKD01946.1 | fmt | PKOR_00800 | PKOR_22215 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.914 |
AKD01946.1 | folD | PKOR_00800 | PKOR_17575 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.970 |
AKD01946.1 | gcvT | PKOR_00800 | PKOR_10080 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.916 |
AKD01946.1 | glyA | PKOR_00800 | PKOR_06115 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.913 |
AKD01946.1 | metG | PKOR_00800 | PKOR_10395 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.930 |
AKD01946.1 | purN | PKOR_00800 | PKOR_07710 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.924 |
AKD02735.1 | AKD01946.1 | PKOR_05880 | PKOR_00800 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.920 |
AKD02735.1 | AKD05282.1 | PKOR_05880 | PKOR_22220 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | 0.919 |
AKD02735.1 | fmt | PKOR_05880 | PKOR_22215 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.920 |
AKD02735.1 | folD | PKOR_05880 | PKOR_17575 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.435 |
AKD02735.1 | gcvT | PKOR_05880 | PKOR_10080 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.948 |
AKD02735.1 | glyA | PKOR_05880 | PKOR_06115 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.933 |
AKD02735.1 | metG | PKOR_05880 | PKOR_10395 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.930 |
AKD02735.1 | purN | PKOR_05880 | PKOR_07710 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.917 |
AKD04533.1 | fmt | PKOR_17315 | PKOR_22215 | Permease; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.907 |
AKD05282.1 | AKD01946.1 | PKOR_22220 | PKOR_00800 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.918 |
AKD05282.1 | AKD02735.1 | PKOR_22220 | PKOR_05880 | Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.919 |