STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bioDDethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. (216 aa)    
Predicted Functional Partners:
bioA
Adenosylmethionine-8-amino-7-oxononanoate aminotransferase; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily.
 
 0.999
bioB
Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism; Belongs to the radical SAM superfamily. Biotin synthase family.
 
 
 0.999
bioC
malonyl-CoA O-methyltransferase; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway.
 
 
 0.934
bioF
8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide.
 
 
 0.925
kbl
2-amino-3-ketobutyrate CoA ligase; Catalyzes the cleavage of 2-amino-3-ketobutyrate to glycine and acetyl-CoA.
 
 
 0.859
cobS
Hypothetical protein; Joins adenosylcobinamide-GDP and alpha-ribazole to generate adenosylcobalamin (Ado-cobalamin). Also synthesizes adenosylcobalamin 5'-phosphate from adenosylcobinamide-GDP and alpha-ribazole 5'- phosphate; Belongs to the CobS family.
  
  
 0.666
birA
Biotin--protein ligase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon.
  
  
 0.580
KRG63343.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.487
argD
Acetylornithine aminotransferase; Catalyzes the transamination of 2-N-succinylornithine and alpha-ketoglutarate into 2-N-succinylglutamate semialdehyde and glutamate; also functions as the catabolic acetylornithine aminotransferase catalyzing the formation of 2-N-acetylglutamate semialdehyde and glutamate from 2-N-acetylornithine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily.
 
 
 
 0.486
KRG66122.1
Lysine 6-aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family.
   
 
 0.482
Your Current Organism:
Stenotrophomonas humi
NCBI taxonomy Id: 405444
Other names: DSM 18929, LMG 23959, LMG:23959, S. humi, Stenotrophomonas humi Heylen et al. 2007, Stenotrophomonas sp. R-32729, strain R-32729
Server load: low (22%) [HD]