STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKG75339.1Sugar dehydrogenase; Converts glucose to D-glucono-1,5 lactone; Derived by automated computational analysis using gene prediction method: Protein Homology. (261 aa)    
Predicted Functional Partners:
gpmI
Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate.
   
 0.858
AKG74007.1
Glucokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.843
AKG74231.1
Glyceraldehyde-3-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; active during glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
   
 0.841
AKG73233.1
Glyceraldehyde-3-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; active during glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
   
 0.837
tpiA
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
   
 0.825
AKG73726.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.822
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
   
 0.819
AKG73654.1
2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.817
AKG74241.1
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.815
fda
Fructose-1,6-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class I fructose-bisphosphate aldolase family.
    
 0.815
Your Current Organism:
Salinicoccus halodurans
NCBI taxonomy Id: 407035
Other names: CGMCC 1.6501, DSM 19336, S. halodurans, Salinicoccus halodurans Wang et al. 2008, Salinicoccus sp. W24, strain W24
Server load: low (20%) [HD]