STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OUC79428.1Bifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (264 aa)    
Predicted Functional Partners:
thiE
Thiamine-phosphate diphosphorylase; Condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). Belongs to the thiamine-phosphate synthase family.
 
 0.996
thiC
Phosphomethylpyrimidine synthase; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. Belongs to the ThiC family.
 
 
 0.986
OUC75905.1
TenA family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.984
thiG
Thiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S.
 
 
 0.945
OUC77764.1
Bifunctional hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.935
pdxS
Pyridoxal 5'-phosphate synthase lyase subunit PdxS; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family.
    
 0.915
pdxT
Pyridoxal 5'-phosphate synthase glutaminase subunit PdxT; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS.
    
 0.913
pdxH
Pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP).
     
 0.906
OUC80050.1
Thiamine biosynthesis protein ThiS; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
  0.861
thiL
Thiamine-phosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family.
    
 0.816
Your Current Organism:
Gordonia lacunae
NCBI taxonomy Id: 417102
Other names: DSM 45085, G. lacunae, Gordonia lacunae le Roes et al. 2009, JCM 14873, NRRL B-24551, strain BS2
Server load: low (14%) [HD]