STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SEH87699.1NADH dehydrogenase. (428 aa)    
Predicted Functional Partners:
SEH36599.1
NADH-quinone oxidoreductase subunit L.
   
 
 0.709
SEH87717.1
cAMP-binding domain of CRP or a regulatory subunit of cAMP-dependent protein kinases.
 
  
  0.703
SEH36589.1
NADH-quinone oxidoreductase subunit M.
   
 
 0.513
nuoH
NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
   
 
 0.508
nuoN
NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
     
 0.507
nuoD
NADH-quinone oxidoreductase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
     
 0.507
nuoB
NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 
 0.497
SEH58502.1
Response regulator receiver domain-containing protein.
     
 0.475
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 
 0.471
acpP
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis.
   
  0.462
Your Current Organism:
Chryseobacterium hominis
NCBI taxonomy Id: 420404
Other names: C. hominis, CCUG 52711, CDC group II-c, CDC group II-h, CIP 109415, CIP 109575 [[Chryseobacterium arothri]], Chryseobacterium arothri, Chryseobacterium arothri Campbell et al. 2008, Chryseobacterium hominis Vaneechoutte et al. 2007, DSM 19326 [[Chryseobacterium arothri]], strain NF802, strain P2K6 [[Chryseobacterium arothri]]
Server load: low (18%) [HD]