STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AJQ45069.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
  
 
 0.989
AJQ45070.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SUA5 family.
  
  
 0.832
AJQ45071.1
Galactoside O-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.811
metK
S-adenosylmethionine synthase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
    
 0.719
atpE
ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.679
AJQ45494.1
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   0.667
atpC
ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane.
  
   0.655
atpD
ATP F0F1 synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
  
   0.655
AJQ45199.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   0.628
atpH
Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.628
Your Current Organism:
Ureaplasma diversum
NCBI taxonomy Id: 42094
Other names: ATCC 43321, CIP 106089, NCTC 10182, U. diversum, strain A417
Server load: low (22%) [HD]