STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
accCacetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (451 aa)    
Predicted Functional Partners:
accB
acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
 
 0.999
pycB
Pyruvate carboxylase subunit B; Catalyzes the formation of oxaloacetate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.998
accD
acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family.
 0.989
accA
acetyl-CoA carboxylase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA.
 
 0.986
fabD-2
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
 
 0.958
fabD
Malonyl CoA-acyl carrier protein transacylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.953
AMR64871.1
Beta-ketoacyl synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family.
 
 
 0.944
pta
Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family.
    
 0.917
AMR65606.1
3-oxoacyl-ACP synthase; FabH; beta-ketoacyl-acyl carrier protein synthase III; catalyzes the condensation of acetyl-CoA with malonyl-ACP to initiate cycles of fatty acid elongation; this condensing enzyme differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.916
acsA
Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family.
  
 0.914
Your Current Organism:
Pseudomonas alcaligenes
NCBI taxonomy Id: 43263
Other names: ATCC 14909, CFBP 2437, CIP 101034, DSM 50342, IAM 12411, IFO 14159, JCM 5967, NBRC 14159, NCCB 76044, NCTC 10367, P. alcaligenes, VKM B-2171
Server load: low (16%) [HD]