STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslUHeat shock protein HslVU, ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (448 aa)    
Predicted Functional Partners:
hslV
20S proteasome A and B subunits; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
 
 0.998
grpE
GrpE protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...]
   
  
 0.873
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
   
  
 0.853
groS
Chaperonin Cpn10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
   
  
 0.831
lon
ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
  
  
 0.830
ACD67184.1
TIGRFAM: transposase; transposase, IS605 OrfB family; PFAM: transposase IS605 OrfB; KEGG: tte:TTE0855 hypothetical protein.
       0.768
ACD67182.1
PFAM: regulatory protein AsnC/Lrp family; KEGG: rca:Rcas_1782 transcriptional regulator, AsnC family.
       0.754
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
   
  
 0.694
ACD66203.1
PFAM: DnaJ central domain protein; heat shock protein DnaJ domain protein; KEGG: aae:aq_1735 chaperone DnaJ.
   
 
 0.644
ACD66555.1
PFAM: heat shock protein DnaJ domain protein; KEGG: dsy:DSY1417 hypothetical protein.
   
 
 0.644
Your Current Organism:
Sulfurihydrogenibium sp. YO3AOP1
NCBI taxonomy Id: 436114
Other names: S. sp. YO3AOP1
Server load: low (20%) [HD]