STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EDZ46391.1Mrp/NBP35 family protein; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. (354 aa)    
Predicted Functional Partners:
fdhB
Formate dehydrogenase, beta subunit; [C] COG4656 Predicted NADH:ubiquinone oxidoreductase, subunit RnfC.
    
 0.905
nuoC
NADH-quinone oxidoreductase chain c; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
     
 0.765
nuoD
NADH dehydrogenase (quinone), D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
     
 0.765
miaB
tRNA-i(6)A37 thiotransferase enzyme MiaB; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine.
  
   
 0.699
nuoG
NADH dehydrogenase (quinone), G subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family.
    
 0.658
EDZ46507.1
Polysaccharide biosynthesis/export protein; [M] COG0797 Lipoproteins.
  
 0.656
EDZ46933.1
[M] COG1596 Periplasmic protein involved in polysaccharide export.
  
 0.656
nuoI
NADH-quinone oxidoreductase subunit i; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.654
RBY4I_4
Proline dehydrogenase, alpha subunit; [R] COG0446 Uncharacterized NAD(FAD)-dependent dehydrogenases.
    
 0.647
napF
Ferredoxin-type protein NapF; [C] COG1145 Ferredoxin.
  
 
 0.646
Your Current Organism:
Rhodobacterales bacterium Y4I
NCBI taxonomy Id: 439496
Other names: R. bacterium Y4I
Server load: low (22%) [HD]