STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KYK43097.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (75 aa)    
Predicted Functional Partners:
KYK43098.1
Aminoglycoside phosphotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.785
mtnP
5'-methylthioadenosine phosphorylase; Catalyzes the reversible phosphorylation of S-methyl-5'- thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate. Involved in the breakdown of MTA, a major by-product of polyamine biosynthesis. Responsible for the first step in the methionine salvage pathway after MTA has been generated from S-adenosylmethionine. Has broad substrate specificity with 6-aminopurine nucleosides as preferred substrates; Belongs to the PNP/MTAP phosphorylase family. MTAP subfamily.
    
  0.611
glpK
Glycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism. Catalyzes the phosphorylation of glycerol to yield sn- glycerol 3-phosphate; Belongs to the FGGY kinase family.
    
 0.533
pdxH
Pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP).
     
 0.492
KYK50490.1
Pyridoxal kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyridoxine kinase family.
    
 0.490
KYK43144.1
Chloride channel protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
  0.483
KYK46715.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
    0.481
KYK44880.1
Phospholipase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.478
atpE
ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 
 0.459
KYK49657.1
Glycerophosphodiester phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.454
Your Current Organism:
Bradyrhizobium liaoningense
NCBI taxonomy Id: 43992
Other names: ATCC 700350, B. liaoningense, Bradyrhizobium sp. 4345, Bradyrhizobium sp. Spr3-7, CIP 104858, LMG 18230, LMG:18230, NBRC 100396, strain 2281
Server load: low (16%) [HD]