STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
IW15_14240Keto-deoxy-phosphogluconate aldolase; Catalyzes the formation of pyruvate and glyoxylate from 4-hydroxy-2-oxoglutarate; or pyruvate and D-glyceraldehyde 3-phosphate from 2-dehydro-3-deoxy-D-glyconate 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (225 aa)    
Predicted Functional Partners:
IW15_14245
2-dehydro-3-deoxygluconokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.998
uxaC
Glucuronate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.943
IW15_09855
Glucokinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial glucokinase family.
  
 
 0.937
IW15_21085
Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
  
 
 0.921
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 
 0.918
IW15_19120
Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family.
    
 0.917
IW15_13410
Hydroxyacid dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family.
    
  0.914
IW15_05470
Malate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the malate synthase family.
     
 0.909
tpiA
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
     
 0.909
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
     
 0.909
Your Current Organism:
Chryseobacterium soli
NCBI taxonomy Id: 445961
Other names: C. soli, Chryseobacterium soli Weon et al. 2008 emend. Hahnke et al. 2016, Chryseobacterium sp. JS6-6, DSM 19298, KACC 12502, strain JS6-6
Server load: low (24%) [HD]