STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tatATwin-arginine translocation protein, TatA/E family subunit; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (60 aa)    
Predicted Functional Partners:
tatC
Sec-independent protein translocase, TatC subunit; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides.
 
 0.975
tatC-2
Sec-independent protein translocase, TatC subunit; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides.
 
 0.927
tatA-2
Twin-arginine translocation protein, TatA/E family subunit; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system.
  
  
 
0.902
Xcel_0070
TIGRFAM: twin-arginine translocation protein, TatB subunit; KEGG: vco:VC0395_A2428 sec-independent translocase.
     
 0.788
guaA
GMP synthase, large subunit; Catalyzes the synthesis of GMP from XMP.
  
    0.755
Xcel_0012
PFAM: Rhomboid family protein; KEGG: aba:Acid345_1881 rhomboid-like protein.
   
 
 0.660
Xcel_0068
PFAM: amine oxidase; FAD dependent oxidoreductase; KEGG: xcc:XCC3278 flavin monoamine oxidase-related protein.
       0.549
ftsY
Signal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC).
   
  
 0.420
Xcel_1669
TIGRFAM: preprotein translocase, YajC subunit; PFAM: YajC family protein; KEGG: bcb:BCB4264_A4535 preprotein translocase, YajC subunit.
   
 
 0.413
secY
Preprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently.
      
 0.412
Your Current Organism:
Xylanimonas cellulosilytica
NCBI taxonomy Id: 446471
Other names: X. cellulosilytica DSM 15894, Xylanimonas cellulosilytica DSM 15894, Xylanimonas cellulosilytica str. DSM 15894, Xylanimonas cellulosilytica strain DSM 15894
Server load: low (26%) [HD]