STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
arrJADP-ribosylation factor J; GTP-binding protein that may be involved in protein trafficking. May modulate vesicle budding and uncoating within the Golgi apparatus (By similarity); Belongs to the small GTPase superfamily. Arf family. (188 aa)    
Predicted Functional Partners:
GxcKK
Uncharacterized protein.
    
 
 0.769
gxcB
Rac guanine nucleotide exchange factor B; Involved in the regulation of the late steps of the endocytic pathway.
    
 
 0.769
copG
Coatomer subunit gamma; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (By similarity).
    
 0.741
copb
Coatomer subunit beta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (By similarity).
   
 0.682
DDB0219603
SEC7 domain-containing protein.
    
 0.673
rabU
Ras-related protein RabU; Belongs to the small GTPase superfamily. Rab family.
  
  0.644
pikD
Phosphatidylinositol 4-kinase; Acts on phosphatidylinositol (PtdIns) in the first committed step in the production of the second messenger inositol-1,4,5,- trisphosphate; Belongs to the PI3/PI4-kinase family. Type III PI4K subfamily.
    
 0.640
copZb
Probable coatomer subunit zeta-B; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (By similarity). The zeta subunit may be involved in regulating the coat assembly and, hence, the rate of biosynthetic protein transport due to its associat [...]
   
 0.637
copZa
Probable coatomer subunit zeta-A; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (By similarity). The zeta subunit may be involved in regulating the coat assembly and, hence, the rate of biosynthetic protein transport due to its associat [...]
   
 0.637
cope
Coatomer subunit epsilon; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (By similarity).
   
 0.637
Your Current Organism:
Dictyostelium discoideum
NCBI taxonomy Id: 44689
Other names: D. discoideum
Server load: low (22%) [HD]