STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvHGlycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (130 aa)    
Predicted Functional Partners:
gcvP
Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
 
 0.999
SHL50008.1
Aminomethyltransferase.
 
 0.999
SHL81959.1
Aminomethyltransferase; Belongs to the GcvT family.
 
 0.998
SHL81926.1
Glycine cleavage system T protein (aminomethyltransferase); Belongs to the GcvT family.
 
 0.984
SHM46151.1
Sarcosine oxidase subunit alpha; Belongs to the GcvT family.
 
 0.978
SHL99057.1
Sarcosine oxidase subunit alpha; Belongs to the GcvT family.
 
 0.977
lipA
Lipoic acid synthetase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives.
 
 
 0.969
glyA-2
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 
 0.962
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 
 0.961
lipB
Lipoyl(octanoyl) transferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate.
 
 
 0.961
Your Current Organism:
Halomonas cupida
NCBI taxonomy Id: 44933
Other names: ATCC 27124, Alcaligenes cupidus, CCUG 16075, CIP 103199, DSM 4740, Deleya cupida, H. cupida, JCM 20632, LMG 3448, LMG:3448, NBRC 102219, strain 79
Server load: low (18%) [HD]