STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nuoCNADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (591 aa)    
Predicted Functional Partners:
SHL35950.1
Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
   
 
 0.999
SHL35982.1
Ubiquinol-cytochrome c reductase cytochrome b subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
   
 
 0.999
SHL36019.1
Ubiquinol-cytochrome c reductase cytochrome c1 subunit.
   
 
 0.999
acpP
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis.
   
 0.999
SHL49072.1
Cytochrome c oxidase subunit 2; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
   
 
 0.999
SHL49101.1
Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
   
 
 0.999
SHL49153.1
Cytochrome c oxidase subunit 3.
   
 
 0.999
SHL58848.1
NADH dehydrogenase.
   
 0.999
SHL62426.1
Cytochrome bo3 quinol oxidase subunit 3.
   
 
 0.999
SHL62462.1
Cytochrome bo3 quinol oxidase subunit 1 apoprotein; Belongs to the heme-copper respiratory oxidase family.
   
 
 0.999
Your Current Organism:
Halomonas cupida
NCBI taxonomy Id: 44933
Other names: ATCC 27124, Alcaligenes cupidus, CCUG 16075, CIP 103199, DSM 4740, Deleya cupida, H. cupida, JCM 20632, LMG 3448, LMG:3448, NBRC 102219, strain 79
Server load: low (26%) [HD]