STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
A0A0E0QME4Uncharacterized protein. (203 aa)    
Predicted Functional Partners:
A0A0E0P210
Uncharacterized protein.
  
 0.999
A0A0E0Q7E9
Uncharacterized protein.
  
 0.999
psaB
Photosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin.
  
 
 0.997
psaC
Photosystem I iron-sulfur center; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, [...]
  
 
 0.997
psaA
Photosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin.
  
 
 0.996
A0A0E0R1N4
Uncharacterized protein.
  
 
 0.995
A0A0E0RGJ1
PsaL domain-containing protein.
  
 0.993
A0A0E0Q416
Uncharacterized protein.
   
 0.991
ndhD
NAD(P)H-quinone oxidoreductase chain 4, chloroplastic.
    
 0.991
A0A0E0RI22
Uncharacterized protein.
    
 0.990
Your Current Organism:
Oryza rufipogon
NCBI taxonomy Id: 4529
Other names: O. rufipogon, Oryza rufipogon Griff., common wild rice, red rice
Server load: low (28%) [HD]