STRINGSTRING
purF protein (Methanococcus voltae) - STRING interaction network
"purF" - Amidophosphoribosyltransferase in Methanococcus voltae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine (462 aa)    
Predicted Functional Partners:
purM
Phosphoribosylformylglycinamidine cyclo-ligase (352 aa)
 
 
  0.999
purD
Phosphoribosylamine/glycine ligase (445 aa)
 
  0.999
purL
Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (740 aa)
   
 
  0.998
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (225 aa)
 
 
  0.993
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase (244 aa)
 
   
  0.988
Mvol_1334
Inosine-5’-monophosphate dehydrogenase (498 aa)
   
 
  0.984
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of ribose 1,5-bisphosphate. Catalyzes the transfer of pyrophosphoryl group from ATP to ribose- 5-phosphate to yield phosphoribosyl diphosphate (PRPP) and AMP (287 aa)
   
  0.984
carA
Carbamoyl-phosphate synthase, small subunit (366 aa)
   
 
  0.976
purE
Phosphoribosylaminoimidazole carboxylase, catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) (156 aa)
 
 
  0.975
Mvol_0245
Hypothetical protein (358 aa)
   
 
  0.974
Your Current Organism:
Methanococcus voltae
NCBI taxonomy Id: 456320
Other names: M. voltae, M. voltae A3, Methanococcus voltae, Methanococcus voltae A3, Methanococcus voltae str. A3, Methanococcus voltae strain A3, Methanococcus voltaei
Server load: low (7%) [HD]