STRINGSTRING
purD protein (Methanococcus voltae) - STRING interaction network
"purD" - Phosphoribosylamine/glycine ligase in Methanococcus voltae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purDPhosphoribosylamine/glycine ligase (445 aa)    
Predicted Functional Partners:
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (225 aa)
 
  0.999
purL
Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (740 aa)
 
  0.999
purM
Phosphoribosylformylglycinamidine cyclo-ligase (352 aa)
 
  0.999
purE
Phosphoribosylaminoimidazole carboxylase, catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) (156 aa)
 
  0.999
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine (462 aa)
 
  0.999
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase (244 aa)
   
 
  0.997
Mvol_1664
Adenylosuccinate lyase (448 aa)
   
 
  0.996
purT
Phosphoribosylglycinamide formyltransferase 2; Catalyzes two reactions- the first one is the production of beta-formyl glycinamide ribonucleotide (GAR) from formate, ATP and beta GAR; the second, a side reaction, is the production of acetyl phosphate and ADP from acetate and ATP (395 aa)
   
 
  0.946
pyrE
Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5-phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP) (184 aa)
   
   
  0.930
Mvol_1334
Inosine-5’-monophosphate dehydrogenase (498 aa)
   
   
  0.923
Your Current Organism:
Methanococcus voltae
NCBI taxonomy Id: 456320
Other names: M. voltae, M. voltae A3, Methanococcus voltae, Methanococcus voltae A3, Methanococcus voltae str. A3, Methanococcus voltae strain A3, Methanococcus voltaei
Server load: low (9%) [HD]