STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
xthA1Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. (331 aa)    
Predicted Functional Partners:
exoA
Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.927
xthA2
Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.915
lig3
DNA ligase D; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.822
ada
DNA methylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.718
birA
Hypothetical protein; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon.
  
    0.715
nth
Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate.
 
 0.701
dnaN
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
   
 0.701
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
 0.687
mutY
A/G-specific adenine glycosylase; Adenine glycosylase active on G-A mispairs.
    
 0.660
hfq
RNA chaperone Hfq; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Also binds with high specificity to tRNAs. Belongs to the Hfq family.
    
 
 0.631
Your Current Organism:
Xanthomonas euvesicatoria
NCBI taxonomy Id: 456327
Other names: ATCC 11633, Bacterium vesicatorium, DSM 19128, ICMP 109, ICMP 98, NCPPB 2968, X. euvesicatoria, Xanthomonas campestris (pv. vesicatoria), Xanthomonas campestris pv. Vesicatoria type A, Xanthomonas campestris pv. vesicatoria, Xanthomonas euvesicatoria Jones et al. 2006 emend. Constantin et al. 2016
Server load: low (18%) [HD]