node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
fusA | hrpB | BJD11_17760 | BJD11_21390 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.714 |
fusA | rhlB | BJD11_17760 | BJD11_02865 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. | 0.782 |
fusA | rhlE | BJD11_17760 | BJD11_04000 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family. | 0.782 |
fusA | rhlE-2 | BJD11_17760 | BJD11_20520 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family. | 0.782 |
fusA | rpsA | BJD11_17760 | BJD11_10420 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 0.955 |
fusA | rpsD | BJD11_17760 | BJD11_17625 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. | 0.998 |
fusA | rpsE | BJD11_17760 | BJD11_17655 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | 30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. | 0.999 |
fusA | rpsK | BJD11_17760 | BJD11_17630 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. | 0.998 |
hrpB | fusA | BJD11_21390 | BJD11_17760 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | 0.714 |
hrpB | hrpF | BJD11_21390 | BJD11_20815 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.783 |
hrpB | rhlB | BJD11_21390 | BJD11_02865 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. | 0.687 |
hrpB | rhlE | BJD11_21390 | BJD11_04000 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family. | 0.778 |
hrpB | rhlE-2 | BJD11_21390 | BJD11_20520 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family. | 0.778 |
hrpB | rnd | BJD11_21390 | BJD11_09825 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ribonuclease D; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides; Belongs to the RNase D family. | 0.844 |
hrpB | rpsA | BJD11_21390 | BJD11_10420 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 0.847 |
hrpB | rpsD | BJD11_21390 | BJD11_17625 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. | 0.842 |
hrpB | rpsE | BJD11_21390 | BJD11_17655 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. | 0.700 |
hrpB | rpsK | BJD11_21390 | BJD11_17630 | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. | 0.794 |
hrpF | hrpB | BJD11_20815 | BJD11_21390 | Serine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent helicase HrpB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.783 |
rhlB | fusA | BJD11_02865 | BJD11_17760 | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] | 0.782 |