STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SEL80632.1Hypothetical protein. (156 aa)    
Predicted Functional Partners:
SEL80607.1
MerR HTH family regulatory protein.
     
 0.859
SEL80663.1
DNA-binding transcriptional regulator, MerR family.
 
   
 0.759
arc
Proteasome-associated ATPase; ATPase which is responsible for recognizing, binding, unfolding and translocation of pupylated proteins into the bacterial 20S proteasome core particle. May be essential for opening the gate of the 20S proteasome via an interaction with its C-terminus, thereby allowing substrate entry and access to the site of proteolysis. Thus, the C-termini of the proteasomal ATPase may function like a 'key in a lock' to induce gate opening and therefore regulate proteolysis.
  
    0.711
SEL80694.1
Zinc-ribbon domain-containing protein.
     
 0.632
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
    
   0.606
lon
ATP-dependent Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
    
   0.606
SEK23784.1
Hypothetical protein.
  
     0.474
gcvP
Glycine dehydrogenase (decarboxylating) alpha subunit; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
       0.471
secA
Protein translocase subunit secA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane.
     
 0.467
SEL80757.1
CDP-diacylglycerol-phosphatidylglycerol phosphatidyltransferase; Belongs to the CDP-alcohol phosphatidyltransferase class-I family.
       0.456
Your Current Organism:
Nonomuraea pusilla
NCBI taxonomy Id: 46177
Other names: ATCC 27296, Actinomadura pusilla, BCRC 11619, CBS 262.72, CCRC 11619, CCRC:11619, CECT 3284, CIP 106954, DSM 43357, IFO 14684, IMET 9586, JCM 3144, KCTC 9278, Microtetraspora pusilla, N. pusilla, NBRC 14684, NCIMB 11116, NRRL B-16126, Nonomuria pusilla
Server load: low (26%) [HD]