STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JP75_25325Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein. (176 aa)    
Predicted Functional Partners:
JP75_24820
Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
JP75_24805
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.997
gcvH
Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
 0.993
JP75_22840
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.927
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 
 0.896
purQ
Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...]
  
 
  0.828
JP75_05655
Threonine aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.825
JP75_11295
Catalyzes the formation of 5-aminolevulinate from succinyl-CoA and glycine; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.803
glnA
Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.801
kbl
2-amino-3-ketobutyrate CoA ligase; Catalyzes the cleavage of 2-amino-3-ketobutyrate to glycine and acetyl-CoA.
   
 
 0.800
Your Current Organism:
Devosia riboflavina
NCBI taxonomy Id: 46914
Other names: ATCC 9526, CIP 59.10, D. riboflavina, DSM 7230, IFO 13584, JCM 21244, LMG 2277, LMG:2277, NBRC 13584, NRRL B-2463, NRRL B-784, Pseudomonas riboflavina, strain Foster strain 4R3337
Server load: low (20%) [HD]