STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AQZ81509.1L-valine transporter subunit YgaH; Derived by automated computational analysis using gene prediction method: Protein Homology. (113 aa)    
Predicted Functional Partners:
AQZ81510.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.910
purT
Phosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family.
       0.662
glnD
[protein-PII] uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism.
       0.633
AQZ83765.1
Succinyldiaminopimelate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.601
AQZ81511.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.554
AQZ81508.1
Tautomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.494
Your Current Organism:
Acinetobacter calcoaceticus
NCBI taxonomy Id: 471
Other names: A. calcoaceticus, ATCC 23055, Acinetobacter genomosp. 1, Acinetobacter genomospecies 1, Acinetobacter sp. AV6, Acinetobacter sp. HNR, Acinetobacter sp. STB1, CAIM 17, CCUG 12804, CIP 81.8, DSM 30006, JCM 6842, Micrococcus calcoaceticus, Moraxella calcoacetica, NCCB 22016, NCTC 12983, Neisseria winogradskyi
Server load: low (22%) [HD]