STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aspSaspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (601 aa)    
Predicted Functional Partners:
gatB
glutamyl-tRNA(Gln) amidotransferase, B subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily.
 
 0.995
aspS-2
tRNA synthetase class II (D K and N); Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily.
  
0.939
pheT
phenylalanyl-tRNA synthetase, beta subunit; PFAM: Putative tRNA binding domain; Ferredoxin-fold anticodon binding domain; B3/4 domain; TIGRFAM: phenylalanyl-tRNA synthetase, beta subunit, non-spirochete bacterial; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
 
  
 0.925
alaS
alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain.
  
 0.918
Bcav_2003
PFAM: Anticodon binding domain; tRNA synthetase class II core domain (G, H, P, S and T); TIGRFAM: histidyl-tRNA synthetase.
 
  
 0.915
gatC
glutamyl-tRNA(Gln) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family.
  
 
 0.909
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily.
  
  
 0.876
guaA
GMP synthase, large subunit; Catalyzes the synthesis of GMP from XMP.
  
  
 0.828
valS
tRNA synthetase valyl/leucyl anticodon-binding; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner.
  
  
 0.825
Bcav_1989
PFAM: Domain of unknown function DUF28; TIGRFAM: conserved hypothetical protein TIGR01033.
  
 0.810
Your Current Organism:
Beutenbergia cavernae
NCBI taxonomy Id: 471853
Other names: B. cavernae DSM 12333, Beutenbergia cavernae DSM 12333, Beutenbergia cavernae str. DSM 12333, Beutenbergia cavernae strain DSM 12333
Server load: low (12%) [HD]