node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OOR87946.1 | OOR90376.1 | B0182_11000 | B0182_05750 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.679 |
OOR87946.1 | clpB | B0182_11000 | B0182_13250 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.532 |
OOR87946.1 | dnaK | B0182_11000 | B0182_03700 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.970 |
OOR87946.1 | groL | B0182_11000 | B0182_02210 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.662 |
OOR87946.1 | groS | B0182_11000 | B0182_02205 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.477 |
OOR87946.1 | grpE | B0182_11000 | B0182_03695 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.902 |
OOR87946.1 | htpG | B0182_11000 | B0182_03920 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.889 |
OOR88730.1 | OOR90376.1 | B0182_09545 | B0182_05750 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.679 |
OOR88730.1 | clpB | B0182_09545 | B0182_13250 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.528 |
OOR88730.1 | dnaK | B0182_09545 | B0182_03700 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.874 |
OOR88730.1 | groL | B0182_09545 | B0182_02210 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.596 |
OOR88730.1 | groS | B0182_09545 | B0182_02205 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.477 |
OOR88730.1 | grpE | B0182_09545 | B0182_03695 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.764 |
OOR88730.1 | htpG | B0182_09545 | B0182_03920 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.889 |
OOR90376.1 | OOR87946.1 | B0182_05750 | B0182_11000 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.679 |
OOR90376.1 | OOR88730.1 | B0182_05750 | B0182_09545 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.679 |
OOR90376.1 | dnaJ | B0182_05750 | B0182_11020 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.679 |
OOR90376.1 | dnaK | B0182_05750 | B0182_03700 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.894 |
OOR90376.1 | htpG | B0182_05750 | B0182_03920 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.992 |
clpB | OOR87946.1 | B0182_13250 | B0182_11000 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.532 |