STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpmJ50S ribosomal protein L36; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)    
Predicted Functional Partners:
rplR
50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance.
  
 
 0.997
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
  
 
 0.997
rpmD
50S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.997
rplO
50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family.
  
 
 0.997
rpsN
30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
  
 
 0.996
rplF
50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family.
  
 
 0.996
rpsM
30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family.
  
 
 0.995
rplX
50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit.
  
 
 0.994
rpsH
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family.
  
 
 0.994
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
  
 
 0.994
Your Current Organism:
Moraxella bovis
NCBI taxonomy Id: 476
Other names: ATCC 10900, CCUG 2133, CIP 70.40, DSM 6328, Haemophilus bovis, JCM 20472, LMG 986, LMG:986, M. bovis, Moraxella duplex des bovids, NCTC 11013
Server load: low (22%) [HD]