STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpEATP synthase F0 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (85 aa)    
Predicted Functional Partners:
atpD
ATP synthase F0F1 subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
 
 0.999
atpC
ATP synthase F1 subcomplex epsilon subunit.
 
 0.999
atpB
ATP synthase F0 subcomplex A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.999
atpF
ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
 
 0.999
atpH
ATP synthase%2C F1 delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpA_1
ATP synthase F0F1 subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
 0.999
atpG
ATP synthase F0F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 
 0.999
CUQ25471.1
Archaeal/vacuolar-type H+-ATPase subunit I; Belongs to the V-ATPase 116 kDa subunit family.
  
 0.989
atpA_2
Archaeal/vacuolar-type H+-ATPase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family.
  
 0.985
CUQ25581.1
Protein of uncharacterised function (DUF2764).
  
 0.985
Your Current Organism:
Bacteroides caccae
NCBI taxonomy Id: 47678
Other names: ATCC 43185, B. caccae, CCUG 38735, CIP 104201, DSM 19024, JCM 9498, NCTC 13051, VPI 3452A
Server load: low (18%) [HD]