STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KIR65834.1Molecular chaperone Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology. (557 aa)    
Predicted Functional Partners:
grpE
Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...]
 
 0.955
dnaJ-2
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 0.954
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 0.953
KIR66880.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.920
KIR64428.1
Heat shock protein 90; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.885
htpG
Heat shock protein 90; Molecular chaperone. Has ATPase activity.
 
 
 0.870
KIR65835.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.819
KIR66303.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.800
hrcA
HrcA family transcriptional regulator; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
  
 0.792
KIR64266.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.766
Your Current Organism:
Micromonospora carbonacea
NCBI taxonomy Id: 47853
Other names: ATCC 27114, ATCC 27115, DSM 43168, DSM 43815, IFO 14107, IFO 14108, JCM 3139, M. carbonacea, Micromonospora carbonacea subsp. aurantiaca, Micromonospora carbonacea subsp. carbonacea, NBRC 14108, NRRL 2972
Server load: low (20%) [HD]