STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
cysScysteinyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (471 aa)    
Predicted Functional Partners:
RlmB
rRNA methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family.
 
 
 0.956
KIR65168.1
Cystathionine beta-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.926
cysM
Cysteine synthase; Catalyzes the formation of cysteine from 3-O-acetyl-L-serine and hydrogen sulfide; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.910
thrS
threonine--tRNA ligase; Catalyzes the formation of threonyl-tRNA(Thr) from threonine and tRNA(Thr); catalyzes a two-step reaction, first charging a threonine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family.
 
  
 0.869
KIR65953.1
Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.864
SerS
seryl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.786
KIR60816.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.766
leuS
leucyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 
 0.759
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).
  
  
 0.739
pheT
phenylalanyl-tRNA synthetase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
  
  
 0.712
Your Current Organism:
Micromonospora carbonacea
NCBI taxonomy Id: 47853
Other names: ATCC 27114, ATCC 27115, DSM 43168, DSM 43815, IFO 14107, IFO 14108, JCM 3139, M. carbonacea, Micromonospora carbonacea subsp. aurantiaca, Micromonospora carbonacea subsp. carbonacea, NBRC 14108, NRRL 2972
Server load: low (18%) [HD]