STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
flhDTranscriptional regulator; Functions in complex with FlhC as a master transcriptional regulator that regulates transcription of several flagellar and non- flagellar operons by binding to their promoter region. Activates expression of class 2 flagellar genes, including fliA, which is a flagellum-specific sigma factor that turns on the class 3 genes. Also regulates genes whose products function in a variety of physiological pathways; Belongs to the FlhD family. (116 aa)    
Predicted Functional Partners:
flhC
Transcriptional regulator; Functions in complex with FlhD as a master transcriptional regulator that regulates transcription of several flagellar and non- flagellar operons by binding to their promoter region. Activates expression of class 2 flagellar genes, including fliA, which is a flagellum-specific sigma factor that turns on the class 3 genes. Also regulates genes whose products function in a variety of physiological pathways; Belongs to the FlhC family.
 
 
 0.999
motB
Flagellar motor protein MotB; With MotA forms the ion channels that couple flagellar rotation to proton/sodium motive force across the membrane and forms the stator elements of the rotary flagellar machine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.867
ALX95247.1
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
   0.858
motA
Flagellar motor stator protein MotA; With MotB forms the ion channels that couple flagellar rotation to proton/sodium motive force across the membrane and forms the stator elements of the rotary flagellar machine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.826
fliH
Flagellar assembly protein H; Binds to and inhibits the function of flagella specific ATPase FliI; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   
 0.780
fliT
Flagellar biosynthesis protein FliT; Dual-function protein that regulates the transcription of class 2 flagellar operons and that also acts as an export chaperone for the filament-capping protein FliD. As a transcriptional regulator, acts as an anti-FlhDC factor; it directly binds FlhC, thus inhibiting the binding of the FlhC/FlhD complex to class 2 promoters, resulting in decreased expression of class 2 flagellar operons. As a chaperone, effects FliD transition to the membrane by preventing its premature polymerization, and by directing it to the export apparatus.
 
   
 0.772
fliL
Flagellar basal body-associated protein FliL; Controls the rotational direction of flagella during chemotaxis; Belongs to the FliL family.
  
   
 0.746
ALX95639.1
Flagellar biosynthesis protein FlgA; Involved in the assembly process of the P-ring formation. It may associate with FlgF on the rod constituting a structure essential for the P-ring assembly or may act as a modulator protein for the P- ring assembly; Belongs to the FlgA family.
  
   
 0.733
ALX94928.1
Diguanylate phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.719
cheA
Chemotaxis protein CheA; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.696
Your Current Organism:
Serratia fonticola
NCBI taxonomy Id: 47917
Other names: ATCC 29844, CCUG 14186, CCUG 37824, CCUG 57457 [[Serratia glossinae]], CIP 78.64, DSM 22080 [[Serratia glossinae]], DSM 4576, LMG 7882, LMG:7882, NBRC 102597, NCTC 12965, S. fonticola, Serratia glossinae, Serratia glossinae Geiger et al. 2010, strain 11, strain C1 [[Serratia glossinae]]
Server load: low (26%) [HD]