STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pgi-2Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa)    
Predicted Functional Partners:
tpiA
Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
 
 0.817
pgk
Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family.
  
 
 0.796
ALX94062.1
Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.790
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis.
  
 
 0.780
pfkA
ATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis.
  
 
 0.769
pykF
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.699
pykA
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.699
tktA_2
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
  
 
 0.643
ALX95247.1
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.625
gapA-2
Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
 
  
 0.611
Your Current Organism:
Serratia fonticola
NCBI taxonomy Id: 47917
Other names: ATCC 29844, CCUG 14186, CCUG 37824, CCUG 57457 [[Serratia glossinae]], CIP 78.64, DSM 22080 [[Serratia glossinae]], DSM 4576, LMG 7882, LMG:7882, NBRC 102597, NCTC 12965, S. fonticola, Serratia glossinae, Serratia glossinae Geiger et al. 2010, strain 11, strain C1 [[Serratia glossinae]]
Server load: low (30%) [HD]